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a b s t r a c t

The observation sites that make up air quality monitoring networks can have very different character-
istics (topography, climatology, distance to emission sources, etc), which are partially described in the
meta-information provided with data sets. At the scale of Europe, the description of the sites depends on
the institute(s) in charge of the air quality monitoring in each country, and is based on specific criteria
that can be sometimes rather subjective. The purpose of this study is to build an objective, homogeneous,
and pollutant-specific classification of European air quality monitoring sites, primarily for the purpose of
model verification and chemical data assimilation.

Most studies that tackled this issue so far were based on limited data sets, and often took into account
additional external data such as population density, emission estimates, or land cover maps. The present
study demonstrates the feasibility of a classification only based on the past time series of measured
pollutants. The underlying idea is that the true fingerprint of a given monitoring site lies within its past
observation values. On each site to be categorized, eight indicators are defined to characterize each
pollutant time series (O3, NO2, NO, SO2, or PM10) of the European AirBase and the French BDQA (Base de
Données de Qualité de l’Air) reference sets of validated data over the period 2002e2009. A Linear
Discriminant Analysis is used to best discriminate the rural and urban sites. After projection on the Fisher
axis, ten classes are finally determined on the basis of fixed thresholds, for each molecule.

The method is validated by cross-validation and by direct comparison with the existing meta-data. The
link between the classes obtained and the meta-data is strongest with NO, NO2, and PM10. Across Europe,
the classification exhibits interesting large-scale features: some contrasts between different regions
depend on the pollutant considered. Comparing the classes obtained for different pollutants at the same
site reveals an interesting consistency between the separate classifications. The robustness of the method
is finally assessed by comparing the classifications obtained for two distinct subsets of years. The
robustness e and thus the skill of the objective classification e is satisfying for all of the species, and is
highest with NO and NO2.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As a consequence of industrialization, urbanization, and fossil
fuel use, air pollution has been rising in most parts of the world
over the last decades (Vingarzan, 2004; Oltmans et al., 2006). Most
developed countries have set up laws and developed air quality
measurement networks to monitor pollutant concentrations, and
issuewarnings when acceptable levels are exceeded (Romano et al.,
1999; ADEME, 2002; Lau et al., 2009). The design of air quality
monitoring networks depends on different local constraints, such
as financial resources, environmental priorities, or political
decision-making. The pollutants to be monitored, and the scope
x: þ33 561 07 96 10.

All rights reserved.
and quality of the data collected are all subject to these constraints.
Because air pollution is larger in urban and industrial areas, the
monitoring effort is usually concentrated in and around the cities
(e.g., Gramsch et al., 2006), where high emissions may lead to
concentrations above the threshold values. The main task of the
local governments is indeed to assess the population exposure and
the impact on health, and to determine compliancewith national or
international standards. However, “background” air quality is also
measured in countryside areas, as far as possible from the main
emission sources, which is essential for evaluating large-scale
variability and trends, as well as evaluating air quality models.
This is for example the approach followed in the framework of
EMEP (European Monitoring and Evaluation Programme). Overall,
this results in quite heterogeneous networkse especially in Europe
e both in terms of spatial distribution (high density of sites in and
near the cities) and of spatial representativeness, i.e. the scale of the

mailto:mathieu.joly@meteo.fr
www.sciencedirect.com/science/journal/13522310
www.elsevier.com/locate/atmosenv
http://dx.doi.org/10.1016/j.atmosenv.2011.11.025
http://dx.doi.org/10.1016/j.atmosenv.2011.11.025
http://dx.doi.org/10.1016/j.atmosenv.2011.11.025


M. Joly, V.-H. Peuch / Atmospheric Environment 47 (2012) 111e123112
area that the measurement is supposed to be representative of
(Spangl et al., 2007).

Observations in street canyons and city centers are spatially less
representative than observations in rural background areas.
According to Spangl et al. (2007), the assessment of representa-
tiveness is equivalent to the delimitation of areas where air pollu-
tion has similar characteristics. Classifying monitoring sites and
assessing representativeness are thus related tasks. In most air
quality data sets, measurements are accompanied by a detailed
description of the area inwhich it is done. Suchmeta-information is
precious, since it provides a basis for a first estimate of the repre-
sentativeness, based on a more or less semi-quantitative assess-
ment of some parameters influencing the pollution level like
emissions, population distribution, land use, and the topographic
configuration. However, such classifications e which are most of
the time the only one available e are not universal and rely on the
data monitoring operators.

In Europe, there are presently three classifications of air quality
monitoring. The first derives from the Council decision 97/100/EC
called “Eol” (ADEME, 2002). A second comes from thework done by
the European Topic Centre on Air and Climate Change (ETC-ACC) on
behalf of the European Environment Agency within the framework
of the EUROAIRNET project (Ibid.). The third classification derives
from the European directives relating to air quality (especially
directives 96/62/EC, 99/30/EC, 2000/69/EC), and from the new
“ozone directive” 2002/3/CE (Ibid.). These different European
classifications are not standardized; in particular the number of
classes is not always the same. The primary ordering key can also be
different: it corresponds to the nature of the sources in the “Eol”
classification and to exposure in the “ozone directive”. Besides,
some countries have developed their own national classification
rules in compliance with these general requirements (e.g., France
and Great-Britain). This contributes to the inhomogeneity of meta-
information at the scale of Europe.

Another shortcoming of the current meta-data is that it is not
related to the different pollutants. The specification of a major
emission source can therefore be quite ambiguous for the data user
(Spangl et al., 2007). The Eol “type of station” refers to the “station”
and does not take into account that the contributions of certain
sources may differ largely for different pollutants. For example,
industrial sources may contribute to some pollutants but not to
others. Current classifications, that are not pollutant-specific, may
thus obscure the impact of some pollutant sources (e.g., a contri-
bution to SO2 from industry at a traffic station). Beyond the
Table 1
Overview of the data used in the literature to classify Air Quality (AQ) monitor

Period considered Data sets

Flemming et al., 2005 1995e2001 German A
Henne et al., 2010 2005 - 34 EME

- Populat
- Land-co
- Meteor

Ignaccolo et al., 2008 2006 68 Italian
Kova�c-Andri�c et al., 2010 1997e2003 summers 12 EMEP
Lau et al., 2009 2001e2005 14 Hong-K
Monjardino et al., 2009 1995e2002 - 51 Port

- Populat
Snel, 2004 1999, 2001 and 2002 Dutch AQ
Spangl et al., 2007 2002e2004 - Austrian

- Emissio
- Land-co
- Populat

Tarasova et al., 2007 1990e2004 114 EMEP
This study 2002e2009 - AirBase

- BDQA F
emissions, the other factors (chemistry, dispersion, and transport)
influencing air pollution levels are also pollutant-specific.

The purpose of this study is to build an objective classification
that is homogeneous at the scale of Europe and specific to each
pollutant. The classification should be stable over the considered
period, and any new site should be easily classified a posteriori,
provided that enough data is available. A number of previous
studies had similar objectives: they are listed in Table 1. An
important difference between the different approaches is the data
employed. Some studies use both air quality data (measured or
modeled) and additional data of some parameters influencing air
quality (emissions, building structure, land use, topography, etc) or
the receptors (human population, ecosystems, etc). Besides, most
studies rely on very small air quality data sets or rather short
periods, compared to the amount of air quality monitoring sites
across Europe. Finally, some studies (Tarasova et al., 2007; Henne
et al., 2010; Kova�c-Andri�c et al., 2010) rely on the EMEP network,
which is specially designed to avoid influences and contamination
from local sources, in order to assess long-range trans-boundary air
pollution transport.

In the present paper, we have chosen to implement a classifi-
cation based on the measurement data itself, using all the data
available in the AirBase data set for Europe, and the French data set
named BDQA hereafter (Base de Données de Qualité de l’Air, i.e. Air
Quality Data Base), which is more complete. We deal with near-
surface concentrations, which means that the vertical distribution
of the pollutants is not taken into account. For each of themeasured
pollutants, the goal is to group time series that are homogeneous
from the point of view of their statistical properties. In the frame-
work of the MACC (Monitoring Atmospheric Composition and
Climate) project, this objective classification is proposed for model
verification and chemical data assimilation. MACC (http://www.
gmes-atmosphere.eu/) is the current pre-operational atmospheric
service of the European GMES program, for which an ambitious
ensemble of regional air quality multimodel forecasts has been
developed (Hollingsworth et al., 2008; Huijnen et al., 2010).

Section 2 details the statistical processing of the hourly time
series: the data sets employed, the time-filtering, and the compu-
tation of eight indicators. Section 3 describes the behavior of the
indicators, their transformation, and some preliminary statistical
results. Section 4 details the classification procedure, the cross-
validation, a description of the results, and a robustness assess-
ment. Finally, Section 5 discusses the results and concludes the
study.
ing sites.

used for classification Pollutants considered

Q data O3, NO2, SO2, PM10

P AQ sites O3, NO2, CO
ion density
ver map
ological fields
Piemonte AQ sites O3, NO2, PM10

AQ sites O3

ong sites NO2, PM10

ugal AQ stations O3, NO2, NO, CO, SO2

ion density
stations NO, NO2

AQ data þ Netherlands for validation O3, NO2, PM10

n inventory
ver map
ion density
AQ sites O3

European AQ data O3, NO2, NO, SO2, PM10

rench AQ data

http://www.gmes-atmosphere.eu/
http://www.gmes-atmosphere.eu/
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2. Statistical processing of the hourly time series

For each site and each pollutant, time series of past measure-
ments are treated independently from each other, which means
that spatial relationships are not considered. Time is thus the only
variable. Given the length of the time series (from 1 to 8 years of
hourly data for each site), the inter-annual variability cannot be
taken into account. We will focus on the shorter time-scales (from
a couple of hours to a few days), or on some averaged features
(diurnal and weekly cycles, or winter vs. summer differences). The
goal is to extract from the hourly data all the information that can
help to segregate the monitoring sites.

2.1. European air quality observations

For this study, we have chosen two data sets of validated and
officially reported data:

� The AirBase data set (Version 5 released in April 2011) is
managed by the ETC/ACC on behalf of the European Environ-
ment Agency. It contains air quality monitoring data and
information submitted by the participating countries
throughout Europe. For the pollutants and the period chosen,
4956 sites are available in 35 countries.

� For France, the data set called “Base de Données Qualité de
l’Air” (BDQA) was maintained until 2010 by the “Agence de
l’Environnement et de la Maîtrise de l’Energie” (ADEME). For
the period considered, 1190 sites are available, among which
200 are not in AirBase.

The period considered is 2002e2009. The hypothesis is that
over this period, no important change has occurred in the config-
uration of the sites. Eight years is indeed a compromise between
enough data for the statistical analysis, and a period hopefully short
enough to avoid possible drifts or discontinuities in the measure-
ments (e.g., urbanization of some rural areas). Besides, sites with
less than 8760 hourly values (the equivalent of one full year of data)
have been discarded.

Five pollutants are considered: O3, NO2, NO, SO2 and PM10

(Particulate Matter, size < 10 mm). Two pollutants could not be
considered: PM2.5 because they are insufficiently represented
within the AirBase data set; and CO, whose main drawback is the
lack of sufficient data in rural areas (more than half of the CO
measurements are located in “traffic” sites).

For the sites that are in common in AirBase and BDQA data sets,
time series are identical. However, the meta-information differs.
Table 2 compares the BDQA classification (ADEME, 2002) with the
corresponding “station type of area” provided by AirBase. Strangely
enough, some sites considered as “urban” in the French BDQA data
sets are located in a “rural” area according to AirBase V5. Overall,
the classification is different for 32% of the sites. This shows the
limits of the meta-data, and the potential benefits of an automated
procedure, at least for verification and harmonization at the
European scale.
Table 2
Comparison between AirBase and BDQA meta-data for the French sites that are in
both data sets. Only AirBase ‘background’ sites are considered.

BDQA

Urban Suburban Rural

AirBase
V5

Urban 228 21
Suburban 125 109 6
Rural 15 25 66
2.2. The diurnal cycle

Because of the diurnal character of human activities and emis-
sions, as well as of the solar radiation, pollutant levels are in general
dependent upon the hour of the day. The diurnal cycle is thus at the
heart of the time evolution of anthropogenic pollutants in the
lowest troposphere.

The diurnal cycle of the concentrations is an average feature of
the hourly time series. It evolves during the year, and is modulated
by the inter-annual variability. To take into account this time-
dependence, it has been chosen to compute the diurnal cycle
over a 31-day sliding window. For each day, the diurnal cycle is an
average that takes into account the 15 preceding and 15 following
days. Note that for the hourly average to be computed, the ratio of
missing values has to be lower than 20%, otherwise the value is set
to missing.

Fig. 1a illustrates the sliding diurnal cycle computed for the NO2
measurements of a polluted site located close to Paris “Boulevard
Périphérique”. Over the considered period (September 2006), the
monthly averaged diurnal cycle is not evolving much. It is charac-
terized by two diurnal peaks of high concentrations at the rush
hours, the evening peak being the largest. Unsurprisingly, lowest
values are observed by night, when the traffic is lower.

For each day for which a monthly averaged diurnal cycle could
be obtained, two values are stored: the daily maximum and the
daily amplitude (daily maximum minus daily minimum). For each
month of the year, those values are averaged (if at least 20 values
are available, otherwise the average is set to missing), which
yields e for each time series e an annual cycle of the diurnal cycle
maximum and amplitude. Two other indicators are also computed:
the annual mean (if the 12 monthly values are available, otherwise
the site is discarded) and the “summer (April to September) minus
winter (October to March) difference”. In total, four indicators are
kept, in order to characterize the diurnal cycle of the pollutants.
2.3. The high frequency variability

If we subtract the sliding diurnal cycle from the raw time series,
there remains variability in the range from a couple of hours to
some days (curve s-c in Fig. 1b). The lowest frequencies are directly
tightened to the meteorological large-scale synoptic conditions.
Fig. 2 shows that such large-scale fluctuations are synchronous over
a same region, no matter the type of site (rural, urban, etc). Since
our purpose is to distinguish the different types of sites, the
interesting information is to be found in the high frequency vari-
ability. To filter out the low frequency from the time series, a FIR
filter has been chosen, with a cut-off frequency of 3 days and
a Kaiser window characterized by a 2-day transition width
(Hamming, 1977). The FIR filter has been tuned for this study, and
presents the advantage of having a constant group-delay
throughout the frequency spectrum (half the filter order).

In order to filter out the very large-scale variability e that is
common to all of the stations over a given region e without
affecting the high frequency that we seek to quantify, a cut-off
period at three days has been chosen. The desired indicator is
then defined as the standard deviation of the filtered time series
(curve s-c-l in Fig. 1b), in order to quantify the strength of high
frequency anomalies (e.g., the influence of local plumes).

The issue of missing values is a tricky one when dealing with
filtering. Discarding the missing values before filtering inevitably
leads to artificial “steps” in the data. In our case, it has been verified
that the impact of the discarded missing values on the high
frequency signal (as we have defined it) is not discernible in the
standard deviation of the filtered time series (not shown).
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Fig. 1. Illustration of the filtering procedure for NO2 hourly concentrations near Paris, along the “Boulevard Périphérique” (AirBase station FR04053). The first panel shows the row
series (s) and the diurnal cycle (c) averaged over a sliding 31-day window centred on the considered day. The second panel shows the series filtered from the diurnal cycle (s-c), the
signal filtered from the frequencies higher than 3 days (s-c-l), and the low frequency residual (l).

M. Joly, V.-H. Peuch / Atmospheric Environment 47 (2012) 111e123114
2.4. The “weekend” effect

Because pollutant concentrations at the surface strongly depend
on anthropogenic emissions, the measurements have different
characteristics onweekdays and during weekends (Cleveland et al.,
1974; Beirle et al., 2003; among others). Such aweekly cyclee often
called “weekend effect” in the literature e is expected to be
strongest in polluted areas, and to be small or negligible in areas
with less anthropogenic pressure.
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Fig. 2. Superposition of the hourly NO2 concentrations measured over the Paris area
For this study, the “weekend effect” is accounted for by
extracting from each time series the couples of Sunday andMonday
dates for which the 48 values of hourly data are available. Three
values are then calculated: the daily mean, the daily maximum, and
the daily standard deviation. If at least 20 couples of Sunday and
Monday data are available, three indicators result from the ratio of
the average Sunday values divided by the average Monday values.

To conclude this section, Fig. 3 illustrates the procedure applied
to each time series. For each pollutant, each site, and provided that
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(all sites confounded). The orange box highlights the period considered in Fig. 1.
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Fig. 3. Schematic illustration of the time series treatment for the definition of the 8
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the amount of data is sufficient, eight indicators are derived from
each time series, and are expected to cover the main features of the
measured pollutant behavior.

3. Statistics on the obtained indicators

Now that each hourly time series is characterized by eight
variables, let us scrutinize the obtained values before going further
into the classification procedure.

3.1. Behavior of the raw values

In order to describe the distribution of the values obtained for
each indicator and each pollutant, Table 3 simply gives the tradi-
tional first and last quartiles of the distributions obtained. Some
indicators e especially the winter versus summer ratios and the so-
called “weekend effect” e bring us to some comments:

� Nitrogen oxides (NO2 and NO): the maximum of the diurnal
cycle is significantly lower in summer (almost two times lower
for the NO) than in winter. This is related both to the lower
emissions (domestic heating in winter and no excessive use of
air conditioning in Europe) and to meteorological conditions
(stronger convection and thicker boundary layer on average).
The “weekend effect” is also significant, and is associated with
lower concentrations on Sundays (about three quarters for NO2

and half of Monday values for NO), in part due to the lower
traffic emissions. Note that those values do not take into
account the type of station and include both rural (a priori less
affected by the weekend effect) and urban sites, which
potentially reduces the overall signal.

� Sulfur dioxide: conclusions are about the same as for nitrogen
oxides, with lower concentrations in summer, and lower
concentrations during weekends. According to Bigi and
Harrison (2010), such a behavior of SO2 concentrations might
be explained in part by a decrease in emissions from power
plants due to a smaller energy demand (i.e. an annual cycle and
a weekly cycle of energy demand).
Table 3
For each pollutant, first and last quartiles of the distribution of the 8 indicators. “W/S” s

NO2 2499 sites NO 1993 s

Q25 Q75 Q25

Diurnal cycle Maximum (mg m�3) 26.3 53.1 13.7
Diurnal cycle Maximum W/S 0.68 0.878 0.431
Diurnal cycle Amplitude (mg m�3) 14.6 30.9 10.9
Diurnal cycle Amplitude W/S 0.732 1.03 0.431
Weekend Effect on the daily Mean 0.697 0.806 0.428
Weekend Effect on the daily Maximum 0.714 0.824 0.359
Weekend Effect on the Standard Deviation 0.671 0.817 0.337
High Frequency Standard Deviation (mg m�3) 8.44 14.3 8.89
� Particulate matter (PM10): in most of the sites, the maximum
value of the diurnal cycle is significantly lower in summer. This
has however no discernible impact on the amplitude of the
diurnal cycle. The “weekend effect” is significant: Sundayvalues
are about 10% lower than Monday values. Those results agree
with Bigi and Harrison (2010), who focus on an urban site.

� Ozone (O3): unsurprisingly, the diurnal cycle has a higher
maximum in summer, and a higher amplitude due to photo-
chemistry. The “weekend effect” is significant, especially for
mean values: in half of the sites, ozone concentrations are
increased by 5%e15% on Sundays relatively to Mondays. As
described in the literature (Cleveland et al.,1974; Blanchard and
Fairley, 2001; Jenkin et al., 2002; Atkinson-Palombo et al., 2006;
Sadanaga et al., 2008; Stephens et al., 2008; Tonse et al., 2008;
andmanyothers), themain reason is theweaker ozone titration
by NO, resulting in higher ozone concentrations on weekends.

Despite the fact that all types of observation sites are mixed in
Table 3 (from the most remote rural to the most polluted traffic
site), those preliminary findings are consistent with the literature,
and show that the eight indicators yield a realistic picture of the
main known features of the pollutants behavior in Europe.

3.2. Data transformation and outliers detection

Table 3 gives some insight on the range covered by the indica-
tors, but is insufficient to depict the distributions. Some distribu-
tions are indeed strongly non-normal. For some indicators and
some pollutants, the distribution is skewed to the right, and looks
more like a lognormal distribution. Therefore, it has been decided
to proceed to a log-transformation of some indicators before
further analysis. This is the case for the weekend effect on the daily
means of ozone, and for three of the indicators computed for NO2,
NO, SO2 and PM10: the diurnal cycle maximum, the diurnal cycle
amplitude, and the high frequency standard deviation. It has been
verified (not shown), that all of those indicators are better
distributed after a logarithm transformation (on a decimal basis).
As expected, the log-transformation reduces the highest values and
spreads out the small values.

Along with the distribution shape, data outliers can also
strongly influence the estimation of the group centers and co-
variances in multivariate analysis (Reimann et al., 2008). Outliers
have thus to be removed prior to the analysis, which is a tricky task
as far as multivariate data is considered. Since we deal with a large
data set, an automated procedure was needed, and we adopted the
simplest approach, by discarding one per cent of the data at the
upper and lower ends of the distributions (for each pollutant and
each indicator). Such a procedure cannot distinguish between the
extreme values of the distribution and the spurious outliers of the
data. However, for our classification purpose, extreme values are
not at stake and can be discarded without further care.
tands for Winter/Summer ratio.

ites SO2 1708 sites PM10 1647 sites O3 1942 sites

Q75 Q25 Q75 Q25 Q75 Q25 Q75

53.3 4.7 12.7 27.5 43.3 63.9 78.2
0.7 0.647 1.02 0.784 1.01 1.48 1.99

45.3 2.23 7.8 10.2 21.7 32.2 48.7
0.73 0.668 1.18 0.779 1.18 1.76 2.62
0.66 0.865 0.982 0.867 0.966 1.04 1.14
0.564 0.824 0.978 0.836 0.964 1.01 1.07
0.521 0.772 0.968 0.798 0.971 0.945 1.03

25.8 2.21 7.94 9.75 16.5 14.2 16.8
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The different variables cover different ranges of values. Before to
proceed to multivariate statistical analyses (e.g., Principal Compo-
nent Analysis, PCA) all variables have been rescaled. Here, the
indicators have been first centered relatively to the median, and
then divided by the inter-quartile distance. The median and the
quartiles are more robust than the mean and the standard devia-
tion when dealing with distributions with substantially different
shapes, and a sizable proportion of strong values (Reimann et al.,
2008).

3.3. Use of the meta-data

AirBase and BDQA data sets provide precious meta-information
that qualifies the sites in a specific and thus rather subjective way.
The AirBase meta-data describes both the station type (traffic,
industrial, or background) and the station area (urban, suburban, or
rural), whereas the French BDQA meta-data has a unique and
merged typology (traffic, industrial, urban, suburban, or rural).

This meta-data is essential for the further analysis. For the
sake of clarity, it has been decided to simplify AirBase meta-data,
as is done in the BDQA data set. In the following, the classes R, S
and U refer to AirBase “background” sites that are respectively
“rural”, “suburban” or “urban”. The class T refers to the stations
that are “traffic” in an “urban” or “suburban” area. Finally, the
class “O” regroups the stations without meta-data, the stations
with extreme values of the indicators (cf. the previous paragraph
on the outliers), and the types that are not straightforward to
categorize, such as industrial sites (that can be located in rural,
suburban, or urban areas), or the traffic sites that are in a rural
environment.

Table 4 shows the number of sites for which data were sufficient
to compute the 8 indicators over the period 2002e2009. Note that
depending on the pollutant, the number of rural sites varies quite
a lot relatively to the number of traffic or urban sites. The
disequilibrium is particularly strong for NO2, NO, and PM10, that
have two or three times more traffic sites than rural ones.

3.4. Preliminary analysis

In order to go deeper into an analysis of the data, a graphical
representation could be helpful. However, given the number of
variables, it is not straightforward to represent the full data set in
a synthetic way. The number of dimensions has thus to be
reduced, for example using a Principal Component Analysis. Here,
PCA is used as an illustration, and as a first step towards further
analysis.

In an ideal world, we would expect the first Principal Compo-
nent (PC) to gather most of the total variance, and to reflect the
separation between the different types of sites (from the most rural
to themost polluted). This is however not the case. Fig. 4 shows that
the first PC accounts for 39%e49% of the total variance depending
on the pollutant. The second and third PCs also explain significant
amounts of the total variance (17%e33%).
Table 4
For each meta-data group, number of sites for which the analysis is computed.

AirBase site AirBase area BDQA O3 NO2 NO PM10 SO2

T Traffic Urban/Suburban Traffic 312 719 568 442 337
U Background Urban Urban 611 748 552 532 518
S Background Suburban Suburban 374 349 302 213 217
R Background Rural Rural 422 294 235 165 215
O Others Others Others 223 389 336 295 421
Total 1942 2499 1993 1647 1708
Fig. 5 displays the projection of the data on the first two prin-
cipal components. Some interesting comments can be put forward:

� Apparently, the data e as described by the 8 variables e is not
made of well-separated groups. The R, S, U and T groups based
on the meta-data partly overlap each other in Fig. 5.

� The R and T groups based on the meta-data are clearly at the
margins of the ensemble. On the contrary, U and S sites
constitute the core of the ensemble. Obviously, with the
defined indicators, it will be hard to distinguish between those
U and S types. This suggests that from the point of view of the
past measurements the urban/suburban distinction found in the
meta-data is not necessarily justified.

� The intra-group variance can be quite different depending on
the pollutant. E.g., for the nitrogenmonoxide, rural stations are
scattered, with a wide range of values, whereas traffic stations
form a dense group of points.

� The groups based on the meta-data are best separated with
NO2 and NO data, with rural sites being clearly apart from the
other sub-groups based on the meta-data.

� The first principal component is not necessarily the direction
that best discriminates between the rural and the more
polluted sites (e.g. for the SO2). This shows that the criterion
that underlies a PCA (maximizing the explained variance)
might not bee in our casee the optimal criterion to synthesize
the information and classify the sites.

Because there is a continuum regarding the statistical properties
of the sites, clustering procedures can only be rather an arbitrary
grouping of sites. The goal of the following classification is



Fig. 5. Projection of the data on the two first components of a PCA, and percentage of the total variance explained by the two first components.
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Table 5
Cross-validation of the LDA results. The “Error Ratio” is the number of misclassifi-
cations divided by the total number of sites.

Observed /

Predicted Y

O3 NO2 NO PM10 SO2

R U þ T R U þ T R U þ T R U þ T R U þ T

R 248 23 164 19 128 13 63 27 78 36
U þ T 99 799 50 1353 50 1039 63 874 104 746
Error Ratio 10% 4% 5% 9% 15%
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therefore to stratify the sites according to the behavior of the
defined indicators.

4. The classification procedure

Now that each pollutant time series is characterized by 8 vari-
ables that gather the key information, the goal in this section is to
build e for each pollutant e an objective classification of the
observation sites.

4.1. The Linear Discriminant Analysis

A number of classification methods are available today in the
literature. The challenge is to find a method that makes the best use
of all the available data, eventually including meta-data. Cluster
analysis is not recommended, since there are apparently no clear
clusters in the data (Fig. 5). Instead of trying to discriminate fully
separate groups, we can try to “stratify” the sites on the basis of the
8 indicators, with the constraint to keep sufficiently consistent with
the meta-data groups.

A way forward is to combine linearly the 8 indicators (some of
these being maybe redundant or even irrelevant to the classifica-
tion), in order to provide an index of the “rurality” or “pollutedness”
of the sites. This is a typical issue of dimensionality reduction, for
which different statistical tools are possible. PCA is the most
common, but it has been shown in the previous section that the
criterion of maximum variance cannot apply fully in our case. Since
we want the classification to be as consistent as possible with the
meta-data, while having its own coherence based on the past
measurements, a statistical tool that seems relevant is the Linear
(or Fisher) Discriminant Analysis (LDA).

The LDA (Fisher, 1936) uses an a priori knowledge about existing
group memberships (here, the meta-data). This knowledge is used
to develop a function that will result in an optimal discrimination of
the groups. Here, we need to separate the rural sites (R), that are the
most representative of the large scale (and can be therefore used for
model validation or data assimilation), from the most polluted (T
and U that have low spatial representativeness). The group S has
been discarded at this stage of the analysis, because it overlaps the
group U (Fig. 5) and may not facilitate the discrimination between
rural and polluted sites.

4.2. Cross-validation, classification, and comparison with the meta-
data

The LDA seeks a linear combination of the variables that has
a maximal ratio of the separation of the class means to the within-
class variance (Reimann et al., 2008). The obtained discriminant
function makes it then possible to classify any new time series as
belonging to one of the groups based on the 8 indicators alone. With
the existing data, this makes possible to test the accuracy of the
statistical model by cross-validation. The idea is to repeatedly split
the data set into training and test subsets, and repeat the LDA many
times. As the “actual”membership of training setmembers is known,
a table can be prepared showing the number of times observations
are correctly classified ormisclassified. Table 5 reveals that the LDA is
particularly efficient with NO2 and NO data. The error ratio is greater
for the other pollutants, especially for SO2 (reaching 15%).

Since R sites are much less numerous than U þ T sites, it is
interesting to focus on the R group misclassifications. In the case of
PM10 and SO2, more than half of the R sites are misclassified. This
supports the findings of the PCA (Fig. 5): there is no clear separation
between the meta-data groups. For most of the pollutants here
considered, a classification in a limited number of clusters seems
therefore inappropriate.
The LDA yields a linear combination of the 8 indicators that best
discriminates the rural stations from the others. Therefore, in order
to go further than simply reallocating to the R and U þ T groups (as
in the cross-validation above), it is tempting to forget about the
groups based on the meta-data, and to use the projection on the
Fisher axis as an index to define new classes. Using the nine
percentiles from 10% to 90% as fixed thresholds, ten classes have
been defined (this arbitrary number of classes is justified in Section
4.3). Note that with this simple method, any new time series can be
(i) characterized by the 8 indicators, (ii) projected on the Fisher axis,
and (iii) classified using the fixed thresholds.

Fig. 6 shows the distribution of the obtained classes for each
sub-group of the meta-data. This yields a more refined picture of
the LDA than in Table 5, and it is still consistent with the results of
the PCA and of the cross-validation. Let us describe Fig. 6 for each
sub-group of the meta-data:

� Group R: with the pollutants NO2, NO, and PM10, respectively
95%, 94%, and 89% of the R group falls into classes 1 to 3. For
ozone, 63% of the R group falls into classes 1e3, 17% into classes
4e6, and 20% into classes 7e10, which is consistent with the
fact that some stations qualified as “rural” in the meta-data are
in fact located not far downwind of emission sources, and thus
affected by ozone pollution through transport. This is another
reason why a classification based on the past measurements
may be in certain cases more objective than based on purely
local information. Finally, concerning SO2, 77% of R sites fall
into classes 1e3, and 15% into classes 4e5.

� Groups S and U: for O3 and SO2, most of the S and U sites are
shared among the classes 3 to 9. In the case of SO2, a significant
proportion of S sites fall into classes 1 and 2, maybe in
connection with some recent changes in SO2 emissions that
have not been taken into account in the meta-data yet. With
the other pollutants, the behavior of the S and U sites is slightly
different: U sites are concentrated in classes 4e8, whereas S
sites mostly fall into classes 2e6. This confirms that a full
separation of S and U groups is not possible statistically based
on our 8 variables solely. However, the projection on the Fisher
axis helps stratifying urban and suburban measurements in
a rather continuous manner.

� Group T: with NO2, NO, and PM10, respectively 74%, 67%, and
61% of the traffic sites fall into classes 8e10, whereas this is the
case for 54% and 47% of the sites with O3 and SO2. For those two
species, the Tand U groups overlap each other. Note that for the
LDA computation, the U and T sites have been grouped (cf.
x4.1), so the Fisher axis was not constructed specifically to
separate the most urban and the traffic sites.

Another way to analyze the results is to scrutinize Figs. 7 and 8.
Given the size of the domain, only large-scale structures can be
commented.

� Ozone (O3): over the north-eastern part of Europe (especially
the north of Germany, Czechia, Poland, Lithuania, and the
countries around the Baltic), quite a lot of S, U, or even T sites



Fig. 6. Comparison between the obtained classes and the groups based on the meta-
data. For each group, the colour corresponds to the percentage of stations falling in
each class (logarithmic colour scale).
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(i.e., quite polluted according to the meta-data) fall into the
lowest classes 1e3. On the contrary, over the Netherlands, the
south of Germany, the north of France, and the north of Italy,
many R sites fall into the highest classes, probably due to the
transport of polluted air-masses in those densely populated
countries. A rural site (according to the meta-data) in the
Netherlands and a rural site in Scandinavia can thus exhibit
very different statistical behaviors, that are distinguished by
the objective classification.

� Nitrogen dioxide and monoxide (NO2 and NO): in eastern
Germany (especially the region of Leipzig), Czechia, Slovakia,
and Poland, a lot of S, U, and T sites fall in the lowest classes, as
for ozone. This is also true for France, where the classification
tends to reduce the “polluted” character of urban sites,
compared to the meta-data. The objective classification seems
to act as a “recalibration” of the meta-data of some European
countries.

� Particulate matter (PM10): there is an overall good agreement
with the meta-data. The regions with the most marked
discrepancies with the meta-data are the north of Germany
and Finland, where most of the S, U, and T sites fall in the
classes 1e3. This is also the case for several sites in France and
England. As for NO2 and NO, the objective classification tends
to moderate the polluted character of the meta-data U and T
groups.

� Sulphur dioxide (SO2): as for PM10, there is an overall good
agreement between the classification and the meta-data,
except for some regions of Germany. The 10 classes of the
classification yield a more contrasted picture than the 5 types
derived from the meta-data. The “extreme” classes (1e3 and
8e10) tend to be more represented thanwith the meta-data (R
and T types), which is a very useful information regarding high
or respectively low representativeness.

Overall, our statistical classification contributes to some large-
scale reorganization of the sites characteristics, while keeping
a general broad agreement with meta-data based information. This
agrees with the a priori statement that the meta-data is largely
subjective and inhomogeneous. As required, the classification is
pollutant-specific, and some differences between the classes ob-
tained for the different pollutants can already been seen right from
Figs. 7 and 8. For example, the Netherlands is characterized by high
classes for ozone, but not so much for the other pollutants. On the
contrary, Poland exhibits low classes for ozone, but higher classes
as far as PM10 and SO2 are concerned.

4.3. Robustness of the classification

The approach chosen in this study is that the classification is
conducted for each species independently in order to account for the
different configurations of the measurement sites, and especially
the influence from emission sources that can be quite different
depending on the pollutant. Nevertheless, on average and at the
large-scale, we expect the classifications obtained for the different
pollutants to be “sufficiently” consistent.

Fig. 9 compares the classes obtained for the stations that
measure two (or more) pollutants. The consistency between the
classes depends on the pollutants compared:

� With NO and NO2, the agreement between the classes is
particularly good. For 74% of the sites, differences are lower or
equal to 1, and for 96% of the sites differences are lower or equal
to 3. Since NO and NO2 are linked to the same emission sources,
such a consistency is quite satisfactory.

� The coherence of the nitrogen oxides (NO2 and NO) with the
particulate matter PM10 e probably dominated by primary
emissions e is also quite good, with more than 89% of the sites
that have differences inferior or equal to 3.

� For the remaining comparisons (curves of Fig. 9) that involve
either ozone or SO2, differences are slightly more marked. For
ozone, this may be due to the influence of the long-range
transport and of the photochemistry, while for SO2 this may
be due to the emissions sources, that can be different from the
NOx or PM10 (e.g., industrial sites). However, it should be noted
that for all of the pollutants, differences are equal or inferior to
3 for at least 76% of the sites.



Fig. 7. Comparison between the station types based on the meta-data and the classes of the objective classification.
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The good consistency between the classes obtained for the
different species is a satisfactory result, but it is not sufficient to be
in a position to conclude that the classification procedure is robust.
A better benchmark requires an independent data set. In the
absence of such data at the European scale, it has been chosen to
proceed to the classification of the same sites, but for two distinct
groups of years: the years 2003, 2005, 2007, and 2009 (that include
the summer 2003 heat-wave), and the years 2002, 2004, 2006, and
2008. For the stations that have enough data in both subsets, the
classes have been computed and are compared on Fig. 10. For NO2
and NO, there is a remarkable agreement between the classes
computed for both periods. Differences are equal or lower than 1
for more than 96% of the sites. The robustness is substantially
weaker but still very similar for the three other pollutants (O3,
PM10, and SO2). For more than 80% of the sites the differences
between the classes computed for the two distinct subsets of years
are lower or equal to 2.

We have chosen to stratify the results of the LDA into ten classes,
which is arbitrary. Fig. 10 shows that such a precision is justified in
the case of the NO and NO2 classifications. However, with O3, PM10,
and SO2, such a precision is not needed. For those species, the users
of the classification will probably choose to group some of the
classes. One way to do so might be to group classes two by two,
which would lead to 5 classes. Another waymight also be to rely on



Fig. 8. Comparison between the station types based on the meta-data and the classes of the objective classification.
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Fig. 9. Cumulative frequency diagram of the differences between the obtained classes,
when two pollutants are measured at the same site.
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Fig. 10. Cumulative frequency diagram of the differences between the classes obtained
for the two subsets of years: 2003e2005e2007e2009 and 2002e2004e2006e2008.
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the results shown on Fig. 6, in order to define some “super-classes”,
that provide best consistency with the meta-data (e.g., 1e3, 4e7,
and 8e10), if the meta-data is thought to be reliable enough.

5. Discussion and conclusion

Air quality at the surface is strongly heterogeneous, due to
variable surface fluxes (emissions, surface deposition, etc), meteo-
rological conditions, and diverse local configurations (city build-
ings, valleys, etc). Depending on the purpose of the measurements,
monitoring sites have been located in very diverse environments,
from highly populated areas (to estimate exposure), to remote
areas (to assess background conditions and contribution of long-
range transport of pollutants). In each region, the sites are cate-
gorized on the basis of criteria that are largely subjective, which
results in inhomogeneous meta-information at the scale of Europe.
In the framework of the European MACC project (Monitoring
Atmospheric Composition and Climate), therewas a need to classify
measurement sites with a robust approach concerning represen-
tativeness, in order to perform European-wide verification and data
assimilation activities.

Most papers that had tackled this issue so far were based on
limited data sets or periods (see Table 1). Besides, those studies
often took into account additional data such as population density,
land cover, or emission estimates. As discussed in Spangl et al.
(2007), the inclusion of too many parameters in the classification
process might lead to an over-categorization of the sites, with too
many sub-groups for practical interpretation and use for model
verification or in data assimilation systems. We have shown here
that it is possible to classify air quality sites, based only on their
past time series. The advantage is that such a classification can be
easily updated whenever required, and that any new site can also
be classified a posteriori without re-running the Linear Discrimi-
nant Analysis (provided it has a sufficiently long record of
measurements).

The proposed classification is pollutant-specific, which means
that different classes can be obtained for the different pollutants
monitored at a same site. From a technical point of view, this is of
course the simplest approach since the monitoring sites do not
measure the same list of pollutants. This is also motivated by the
fact that emissions, chemistry, deposition and processes are
pollutant-specific. The largest data set available for Europe has
been used (AirBase) and complemented over France with national
data (BDQA). The pollutants investigated over the 2002e2009
period are: O3, NO2, NO, SO2, and PM10.

Time series are firstly filtered in order to extract some essential
statistical features such as the diurnal cycle, the so-called “weekend
effect”, and the high frequency variability (periods lower than 3
days). Eight indicators are defined, taking also into account the
summer/winter differences in the characteristics. Because of the
skewness in their distribution, some indicators have been log-
transformed. To best benefit from the information held by the
eight indicators, while being as much coherent with the meta-data
as possible, a Linear Discriminant Analysis has been then computed
for each pollutant with the scope to best separate rural and urban
sites. After projection on the Fisher axis, ten classes have been
determined on the basis of fixed percentile thresholds.

The objective classification has been first validated by cross-
validation. Best scores are obtained with NO2 and NO data. The
consistency with the available meta-data is lower with the
remaining pollutants, especially SO2, which is not surprising
because the LDA is designed to distinguish rural and urban sites
(that depend mostly on domestic and traffic emissions), while SO2
concentrations are more linked with industrial emissions. Con-
cerning ozone, the consistency with meta-data is rather good,
despite the fact that ozone concentrations are strongly influenced
by long-range transport (which is not accounted for by the meta-
data). With the 8 defined variables, the separation between the
so-called “suburban” and “urban” sites of the meta-data seems
rather arbitrary, with a continuum of the “polluted” character.
Across Europe, the objective classification has a visible impact on
the large-scale distribution of the sites.

The objective classification has been then challenged by
comparing the classes obtained for different pollutants at the same
site, and by comparing the classes obtained for the same sites over
two distinct periods. A broad agreement is found between the
classes obtained for the different pollutants, which is not particu-
larly surprising. Due to the differing lifetimes, a site can be very
little polluted according the short-lived NO or NO2, while under the
influence of polluted plumes for the longer-lived pollutants like
ozone.

Working with air quality data at the scale of Europe is far from
straightforward, because measurement configurations are likely to
represent very different environments. In other words, measure-
ment sites often respond to certain local needs of air quality
monitoring, but the use of the network aggregated over Europe
(e.g., in AirBase data set) is not straightforward. In the framework of
the MACC project, a central purpose of the present classification is
to facilitate the validation of model outputs by groupingmonitoring
sites into classes that are homogeneous in their statistical charac-
teristics. By construction, the classification proposed is pollutant-
specific. The comparison with meta-information and the robust-
ness of the results are quite satisfactory. Classes from different
countries and at different latitudes can now be compared directly.

The practical use of this classification in the framework of the
MACC project is to discard the sites with highest classes for use in
verification or data assimilation. The underlying idea is that a clas-
sification based on the measurement characteristics is the best way
to assess overall “representativeness”. And yet, data assimilation
procedures may be improved by selecting the monitoring sites that
are representative of geographical areas related to the spatial
resolution of the models. This has however to be tested and
requires further work.

Beyond the issue of representativeness, we believe that any
statistical use of air quality data, such as in model output statistics,
mapping, trend analysis, network optimization, or automatic
quality control, benefits from a stable classification methodology
for the observation sites.
Acknowledgments

We acknowledge the European Environment Agency for the
AirBase data set, and the French ADEME (Agence de l’environne-
ment et de la maîtrise de l’énergie) that maintained the BDQA
database over the considered period. Thanks are also due to Ber-
trand Michel (Université Pierre et Marie Curie) for his helpful
comments on the statistical tools used in this study.
References

ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie), 2002. Classifi-
cation and criteria for setting up air-quality monitoring stations Technical
Report. http://www2.ademe.fr.

Atkinson-Palombo, C.M., Miller, J.A., Balling, R.C., 2006. Quantifying the ozone
“weekend effect” at various locations in Phoenix, Arizona. Atmospheric Envi-
ronment 40, 7644e7658.

Beirle, S., Platt, U., Wenig, M., Wagner, T., 2003. Weekly cycle of NO2 by GOME
measurements: a signature of anthropogenic sources. Atmospheric Chemistry
and Physics 3, 2225e2232.

Bigi, A., Harrison, R.M., 2010. Analysis of the air pollution climate at a central urban
background site. Atmospheric Environment 44, 2004e2012.

http://www2.ademe.fr


M. Joly, V.-H. Peuch / Atmospheric Environment 47 (2012) 111e123 123
Blanchard, C.L., Fairley, D., 2001. Spatial mapping of VOC and NOx-limitation of
ozone formation in central California. Atmospheric Environment 35,
3861e3873.

Cleveland, W.S., Graedel, T.E., Kleiner, B., Warner, J.L., 1974. Sunday and workday
variations in photochemical air pollutants in New Jersey and New York. Science
186, 1037e1038.

Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7, 179e188.

Flemming, J., Stern, R., Yamartino, R.J., 2005. A new air quality regime classification
scheme for O3, NO2, SO2 and PM10 observations sites. Atmospheric Environment
39, 6121e6129.

Gramsch, E., Cereceda-Balic, F., Oyola, P., von Baer, D., 2006. Examination of
pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone
data. Atmospheric Environment 40, 5464e5475.

Hamming, R.W., 1977. Digital Filters. Prentice-Hall, ISBN 0132125714.
Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., Buchmann, B., 2010.

Assessment of parameters describing representativeness of air quality in-situ
measurement sites. Atmospheric Chemistry and Physics 10, 3561e3581.

Hollingsworth, A., Engelen, R.J., Textor, C., Benedetti, A., Boucher, O., Chevallier, F.,
Dethof, A., Elbern, H., Eskes, H., Flemming, J., Granier, C., Kaiser, J.W.,
Morcrette, J.-J., Rayner, P., Peuch, V.-H., Rouil, L., Schultz, M.G., Simmons, A.J.,
2008. Toward a monitoring and forecasting system for atmospheric composi-
tion: the GEMS project. Bulletin of the American Meteorological Society 89,
1147e1164.

Huijnen, V., Eskes, H.J., Poupkou, A., Elbern, H., Boersma1, K.F., Foret, G.,
Sofiev, M., Valdebenito, A., Flemming, J., Stein, O., Gross, A., Robertson, L.,
D’Isidoro, M., Kioutsioukis, I., Friese, E., Amstrup, B., Bergstrom, R., Strunk, A.,
Vira, J., Zyryanov, D., Maurizi, A., Melas, D., Peuch, V.-H., Zerefos, C., 2010.
Comparison of OMI NO2 tropospheric columns with an ensemble of global
and European regional air quality models. Atmospheric Chemistry and
Physics 10, 3273e3296.

Ignaccolo, R., Ghigo, S., Giovenali, E., 2008. Analysis of air quality monitoring
networks by functional clustering. EnvironMetrics 19, 672e686.

Jenkin, M.E., Trevor, J.D., Stedman, J.R., 2002. The origin and day-of-week depen-
dence of photochemical ozone episodes in the UK. Atmospheric Environment
36, 999e1012.
Kova�c-Andri�c, E., �Sorgo, G., Kezele, N., Cvita�s, T., Klasinc, L., 2010. Photochemical
pollution indicators-an analysis of 12 European monitoring stations. Environ-
mental Monitoring and Assessment 165, 577e583.

Lau, J., Hung, W.T., Cheung, C.S., 2009. Interpretation of air quality in relation to
monitoring station’s surroundings. Atmospheric Environment 43, 769e777.

Monjardino, J., Ferreira, F., Mesquita, S., Perez, A.T., Jardim, D., 2009. Air quality
monitoring: establishing criteria for station classification. International Journal
of Environment and Pollution 39, 321e332.

Oltmans, S.J., Lefohn, A.S., Harris, J.M., Galbally, I., Scheel, H.E., Bodeker, G.,
Brunke, E., Claude, H., Tarasick, D., Johnson, B.J., Simmonds, P., Shadwick, D.,
Anlauf, K., Hayden, K., Schmidlin, F., Fujimoto, T., Akagi, K., Meyer, C., Nichol, S.,
Davies, J., Redondas, A., Cuevas, E., 2006. Long-term changes in tropospheric
ozone. Atmospheric Environment 40, 3156e3173.

Reimann, C., Filzmoser, P., Garrett, R., Dutter, R., 2008. Statistical Data Analysis
Explained. Ed. Wiley.

Romano, D., Cirillo, M., Coppi, R., D’Urso, P., 1999. Optimal design of air quality
networks detecting warning and alert conditions. Statistical Methods and
Applications 8, 61e73.

Sadanaga, Y., Shibata, S., Hamana, M., Takenaka, N., Bandow, H., 2008. Weekday/
weekend difference of ozone and its precursors in urban areas of Japan,
focusing on nitrogen oxides and hydrocarbons. Atmospheric Environment 42,
4708e4723.

Snel, S., 2004. Improvement of Classifications for AirBase ETC/ACC Technical Report.
Spangl, W., Schneider, J., Moosmann, L., Nagl, C., 2007. Representativeness and

Classification of Air Quality Monitoring Stations Umweltbundesamt report.
Stephens, S., Madronich, S., Wu, F., Olson, J.B., Ramos, R., Retama, A., Muñoz, R.,

2008. Weekly patterns of México City’s surface concentrations of CO, NOx, PM10
and O3 during 1986e2007. Atmospheric Chemistry and Physics 8, 5313e5325.

Tarasova, O.A., Brenninkmeijer, C.A.M., Jöckel, P., Zvyagintsev, A.M., Kuznetsov, G.I.,
2007. A climatology of surface ozone in the extra tropics: cluster analysis of
observations and model results. Atmospheric Chemistry and Physics Discus-
sions 7, 12541e12572.

Tonse, S.R., Brown, N.J., Harley, R.A., Jin, L., 2008. A process-analysis based study of
the ozone weekend effect. Atmospheric Environment 42, 7728e7736.

Vingarzan, R., 2004. A review of surface ozone background levels and trends.
Atmospheric Environment 38, 3431e3442.


	Objective classification of air quality monitoring sites over Europe
	1 Introduction
	2 Statistical processing of the hourly time series
	2.1 European air quality observations
	2.2 The diurnal cycle
	2.3 The high frequency variability
	2.4 The “weekend” effect

	3 Statistics on the obtained indicators
	3.1 Behavior of the raw values
	3.2 Data transformation and outliers detection
	3.3 Use of the meta-data
	3.4 Preliminary analysis

	4 The classification procedure
	4.1 The Linear Discriminant Analysis
	4.2 Cross-validation, classification, and comparison with the meta-data
	4.3 Robustness of the classification

	5 Discussion and conclusion
	Acknowledgments
	References


